Stearns County Ditch 25 Profile Evaluation

Stearns County, Minnesota December 13, 2016

REVISED 1/23/2017 REVISED 4/25/2017

<u>PREPARED FOR:</u> Stearns County 705 Courthouse Square Saint Cloud, MN 56303

PREPARED BY:

Civil Methods, Inc. 1551 Livingston Avenue, Ste. 104 West St. Paul, MN 55118

ENGINEER CERTIFICATION:

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly licensed Professional Engineer under the laws of the State of Minnesota.

Name:	Kent Brander, PE
Signed:	Hed Bank
Date:	04-25-2017
Registration:	<u>MN No. 44578</u>

Table of Contents

1.	INTR	ODUCTION	1
1		PROJECT OVERVIEW	
1	.2	MN 103E.101 STATUTORY COMPLIANCE	1
2.	INFO	RMATION SOURCES	1
2	.1	THOROUGH REVIEW OF RECORDS COMPLETED	
2	.2	DRAINAGE SYSTEM RECORDS AND SITE DATA RESOURCES	1
3.	CD25	INFORMATION ANALYSIS	2
3		CURRENT DITCH ALIGNMENT	
3		CURRENT DITCH PROFILE	
3		ORIGINAL DITCH RECORDS	
3		CORRELATION BETWEEN ORIGINAL AND CURRENT DITCH ALIGNMENT	
3	.5	CORRELATION BETWEEN ORIGINAL DESIGN AND CURRENT DITCH PROFILE	
3	.6	RECOMMENDED PROFILE	
3	.7	Key Outcomes	9

APPENDIX A – ORIGINAL DITCH RECORDS

APPENDIX B – SOIL BORING RECORDS

APPENDIX C – PLAN AND PROFILE SHEETS

1. INTRODUCTION

1.1 Project Overview

Stearns County Ditch 25 (CD25) is a public ditch located in Avon and St. Wendel Townships, Stearns County, Minnesota. It runs a length of approximately 3.1 miles, starting at the eastern end of Kepper Lake and terminating in a creek discharging to the North Fork Watab River. The ditch location and surrounding features are shown in Figure 1.

Based on available records, CD25 was originally constructed in 1905. Since that time, natural processes as well as maintenance operations and other activities that impact the ditch have taken place. As a result, the ditch profile (bottom elevations), cross sections, and other characteristics have changed to some extent.

As the Drainage Authority, Stearns County (County) has an interest in using available records and data to determine the original profile of CD25 where possible, and if this is not possible, to reestablish records defining the ditch characteristics. The goal of this investigation was to analyze available CD25 records and data in order to achieve this objective.

1.2 MN 103E.101 Statutory Compliance

It is expected that the CD25 Profile report may be used in support of reestablishment of the drainage system records, as described in MN Statutes Sect 103E.101A, Subd. 4a. Therefore, wherever applicable, the analysis and reporting have been done in a manner consistent with the statute.

2. INFORMATION SOURCES

2.1 Thorough Review of Records Completed

Stearns County has been the Drainage Authority for CD25 from the time of construction until the present, so all ditch construction, maintenance, and administration records are held with the County. Other entities with jurisdiction in this vicinity were contacted to check whether other pertinent information may be available.

In preparation for this study, County staff gathered and provided the drainage system records listed below. Also, the County recently completed a transfer of its archived ditch records into electronic format, providing an opportunity to search those records for any information relevant to CD25. Therefore, it can be stated with a high level of confidence that all available information has been considered.

2.2 Drainage System Records and Site Data Resources

A number of drainage system records were reviewed in detail and utilized in defining the ditch profile. In addition to drainage system records, other site data was used to put the records in

context and further strengthen the interpretation of the original ditch profile. Details regarding how the information was processed and incorporated into the proposed alignment and profile are provided in Sections 3.4 and 3.5.

- Original ditch records (profile and construction records); included in Appendix A
- Aerial photographs (current and historical)
- Survey data (with "hard-bottom", top of bank, and top of muck measurements)
- Current elevation data (LIDAR)
- Any available culvert/bridge design information
- Soil borings; notes in Appendix B, locations on Plan & Profile sheets (Appendix C)

3. CD25 INFORMATION ANALYSIS

A methodical approach was used to review, analyze, and incorporate the relevant information from each informational resource into an overall assessment of the ditch profile. The starting point for the analysis were the original ditch construction records. In this section, the information from the construction records and other sources is described in more detail, along with the specific approach used to integrate the available information, address discrepancies, and establish an appropriate ditch profile.

3.1 Current Ditch Alignment

An existing conditions plan and profile investigation was conducted in 2014. This investigation included what was designated the "hard bottom" of the ditch and identified the current alignment of the ditch in plan view. In general, it can be seen that for most of its length, the ditch in plan view reflects what is shown in the original ditch map accompanying the construction records. However, there are some discrepancies where the current ditch geometry has more bends or is positioned slightly differently than what is shown on the original map.

For purposes of establishing a profile, it is assumed that the current ditch is correctly situated in terms of its alignment. While it is possible that the ditch has been realigned or segments of it have shifted since the time of construction, absent any other specific information, the current alignment is the most reasonable layout to associate with an official profile moving forward. In any case, while excavation/maintenance activities may be performed to achieve a desired elevation profile, no modification of the ditch alignment is anticipated. Therefore, the alignment and stationing shown in the "existing conditions plan and profile" was assumed to be correct, providing context for processing the profile information.

3.2 Current Ditch Profile

The "hard bottom" survey of CD25 mentioned above was identified to demarcate the potential lower limit of the original excavation depth. In addition to the survey data, several hand-auger

borings were conducted along the centerline of the ditch, in order to verify the character of the subsurface and identify any relevant anomalies.

Figure 2 illustrates the hard-bottom profile relative to the "top of muck" survey, the profile from the original ditch records, and the recommended profile.

3.3 Original Ditch Records

The Original Ditch Records are included in Appendix A. The records consist of the "Map of County Ditch 25" as well as the "Engineer's Report in Ditch Proceedings," the latter of which contains detailed construction records. Stationing along the ditch is identified in each document, allowing the information from the to be correlated.

It is apparent from the original records that for most of its length, the ditch was constructed according to a set alignment and slope. However, at one point (original Station 127+91) the ditch excavation appears to have intersected with a pre-existing ditch, at a lower elevation than the ditch bottom at that point. According to the original records, the excavation continued at Station 138+00.

The use of the pre-existing ditch bottom as the bottom of CD25 for this segment appears to be a deviation from the original ditch design, but it does represent the original as-built conditions. Given the circumstances, the original Station 138+00 would not be located at the expected distance from Station 127+91. Instead, it is important to identify where the original excavation continued, at the downstream end of the segment utilizing the pre-existing ditch. Considering the location of property lines as well as the original and existing alignments, the segment utilizing the existing ditch bottom in this location ends at the (new) station 140+21.4. The next section provides a discussion of how the new stationing was developed.

3.4 Correlation between Original and Current Ditch Alignment

The original ditch map shows a number of points where the alignment of the ditch changes significantly. These points are also identified in the engineer's report, and they provide a way to correlate the original construction records to current conditions. It is understood that the measuring of distances and other dimensions in the field, particularly at the time of ditch construction, is subject to error. By identifying key points, or "anchor points" that are recognizable both in the field and on the original map, analysis of the profile can be done in a segmented fashion, distributing measurement error and better reflecting the conditions as constructed.

The basic procedure for projecting the original design information onto the actual alignment is as follows:

1. Identify "anchor points," or locations of alignment changes that are identifiable in both the original design and existing alignments. In the field, these locations represent how

the ditch was actually constructed, and it can be inferred that between any two of these clearly identifiable points, the original builders intended to follow the design parameters for that particular segment.

- 2. With the anchor points correlated, calculate both the actual constructed length and the original design length of each segment, and then calculate the length ratio (constructed/design) for each segment. This allows the original design stationing to be either stretched or shortened on a segment-by-segment basis, so that it lines up with the constructed stationing for comparison.
- 3. To compare elevation information, list the survey data with stations and elevations along the actual/constructed alignment. The "ditch bottom" or "bottom of sediment" elevations are taken to be the most reflective of the ditch profile. Interpolation between these known points is used to determine the existing ditch bottom elevation at any given point along the constructed alignment.

The following table summarizes the correlation between the original design alignment and the actual constructed alignment. Note that the starting point of the constructed ("new") alignment corresponds to Station 0+13.01 of the design ("old") alignment. Also, some of the alignment changes shown in the original ditch records are not included in the table, because the change was not pronounced enough to definitively identify it in the field.

Segment	Old Start	Old End	Old	New Start	New End	New	Length Ratio
	Station	Station	Length	Station	Station	Length	(New/Old)
1	0+13.01	8+75	861.99	0	8+63.6	863.6	1.001868
2	8+75	46+53	3778	8+63.6	46+48.45	3784.85	1.001813
3	46+53	51+55	502	46+48.45	51+42.38	493.93	0.983924
4	51+55	59+40	785	51+42.38	59+18.3	775.92	0.988433
5	59+40	79+88	2048	59+18.3	79+88.55	2070.25	1.010864
6	79+88	91+96	1208	79+88.55	91+94.58	1206.03	0.998369
7	91+96	99+81.5	785.5	91+94.58	99+74.43	779.85	0.992807
8	99+81.5	104+22	440.5	99+74.43	104+00.24	425.81	0.966652
9	104+22	121+25	1703	104+00.24	120+97.4	1697.16	0.996571
10	121+25	138+00	1675	120+97.4	139+87.4	1890	1.128358
11	138+00	145+70	770	139+87.4	147+11.51	724.11	0.940403
12	145+70	155+00	930	147+11.51	155+62.87	851.36	0.915441
13	155+00	161+78	678	155+62.87	162+77.94	715.07	1.054676

 Table 1. Correlation of Original and New Alignment Stationing

3.5 Correlation between Original Design and Current Ditch Profile

3.5.1 Ambiguity of Original Vertical Datum

The key challenge of defining the original design profile is the fact that the elevations cited in the Engineer's Report and Original Plan and Profile are measured from an unknown, local datum. Therefore, while defining the alignment and the general shape/slopes of the design profile is relatively straightforward, determining the proper vertical placement of the profile requires weighing multiple factors and applying engineering judgement.

3.5.2 Role of the Original Design Profile

The original design, as reflected in Exhibit 2 of the 1905 Engineer's Report (see Appendix A), is the best information available regarding the intended ditch construction. However, there would be a variety of potential circumstances in which field conditions would result in the actual construction varying from the design. It is important to understand that the builders would be guided primarily by the design, but would also make practical adjustments in the field, provided that any modifications do not fundamentally alter the functionality of the ditch.

The possibility of the builders deviating logically from the original design profile is most relevant in the segment described above, between original design (old) Stations 127+91 and (old) 138+00. At Station (old) 127+91, the original design profile is set aside, and the bottom of the pre-existing ditch is essentially considered to be the bottom of the new ditch. Based on the original plan and profile, this elevation sits over 4 feet below the original design profile. At the time of construction, it is very likely that rather than have an abrupt 4-foot drop in profile elevation, the segment upstream of (old) Station 127+91 was excavated for a gradual transition to the pre-existing ditch bottom. Whether it was originally excavated as a gradual transition, or whether it equilibrated that way over time, the end result is that the current ditch bottom does not express an abrupt change in elevation immediately upstream of (old) 127+91. It is unlikely that the as-built profile in that location was ever actually at a substantially higher elevation (relative to the pre-existing ditch bottom) for any extended period of time.

3.5.3 Comparing with Survey Data

To compare elevation information, list the survey data with stations and elevations along the actual/constructed alignment. The "ditch bottom" or "bottom of sediment" elevations are taken to be the most reflective of the ditch profile. Interpolation between these known points is used to determine the existing ditch bottom elevation at any given point along the constructed alignment.

3.5.4 Structures

From the point of beginning to the terminus of CD25, there are 4 crossing structures installed along the waterway. There is one field bridge approximately at Station 103+30, the Lake Wobegon Trail bridge crossing at Station 161+16, a culvert under Meadowview Road at approximately Station 17+90, and another under Norway Road at 149+81. With their fixed bottom inverts, the structure crossings have the potential to affect the control elevation of the ditch, and should be considered in establishing the official profile.

3.5.5 Downstream Control Elevation

As described above, at its downstream end, CD25 terminates in an existing creek that discharges to the downstream waterway. Practically speaking, the elevation of the existing creek at the point of terminus is a limiting elevation for the ditch bottom. Under normal circumstances the creek downstream of the terminus would not be excavated lower than its current or natural elevation. It follows that at that location, there would be essentially no benefit to excavating the ditch bottom below the creek elevation. Therefore, it is logical to stipulate that the profile at that location is at an elevation no lower than the surveyed "hard bottom" elevation.

3.5.6 Upstream Control Elevation

The beginning point of the ditch is the outlet elevation of Kepper Lake. It should be noted that at the time of original ditch construction, less emphasis was placed on the potential ecological issues associated with draining wetlands or impacting the outlet elevation of a lake. The original plan and profile shows the point of beginning of the ditch at an elevation 4 feet below the water level at that time. However, as indicated previously, there is no clear indication of what elevation that corresponds using a modern datum.

The survey data at this location (lake outlet) indicate a ditch bottom elevation of 1118.98 and a top of sediment elevation of 1120.41. Also, the Engineer's Report indicates a slope of 0.2% for the design profile.

3.5.7 Synthesis of Information and Resolution of Discrepancies

The various factors above were weighed and discrepancies resolved in the following manner in order to determine the most appropriate profile elevations:

1. The highest invert of the culvert under Meadowview Road was set at the bottom of the profile (Station 17+76, Elevation 1116.3). This was the most reasonable approach for several reasons. First, nothing indicates that the culvert was not originally set at the design profile elevation. Secondly, if the design profile slope is applied to the profile upstream of this location, and the culvert is set at the current invert elevation, this will produce a discharge elevation at Kepper Lake that closely reflects the surveyed discharge elevation. Again, having no other specific lake outlet elevation from the time of construction, the best available information is the ditch bottom survey. Therefore, setting the profile at these elevations is both supported by the available data and allows the preservation of the existing lake outlet and culvert elevations.

- For the segment starting immediately downstream of the Meadowview Road Culvert (Station 18+00, Elevation 1116.3) and continuing to a high point marking a break in slope (Station 67+00, Elevation 1111), the original design profile slopes were used, with elevations relative to the inverts of the culvert under Meadowview Road.
- 3. For the next segment (Station 67+00 to Station 142+70), the original design profile was ignored in favor of a slope more resembling the existing ditch. The reasoning behind this is explained in Section 3.5.2. Essentially, a gradual slope along the entire segment is a much more likely description of the original construction (as opposed to a flatter slope followed by a steep drop, as the original design profile would suggest), in addition to being consistent with existing conditions and in general a more stable profile.
- 4. For the segment running from Station 142+70, at elevation 1095.4, to the terminus at 163+12, the original design profile slope is again used, with the downstream end tied in to the bottom elevation of the creek (1093.3) where the ditch ultimately discharges. The current culvert inverts under Norway Road conform to within 1 inch of this profile.

3.6 Recommended Profile

3.6.1 Summary of Alignment and Profile

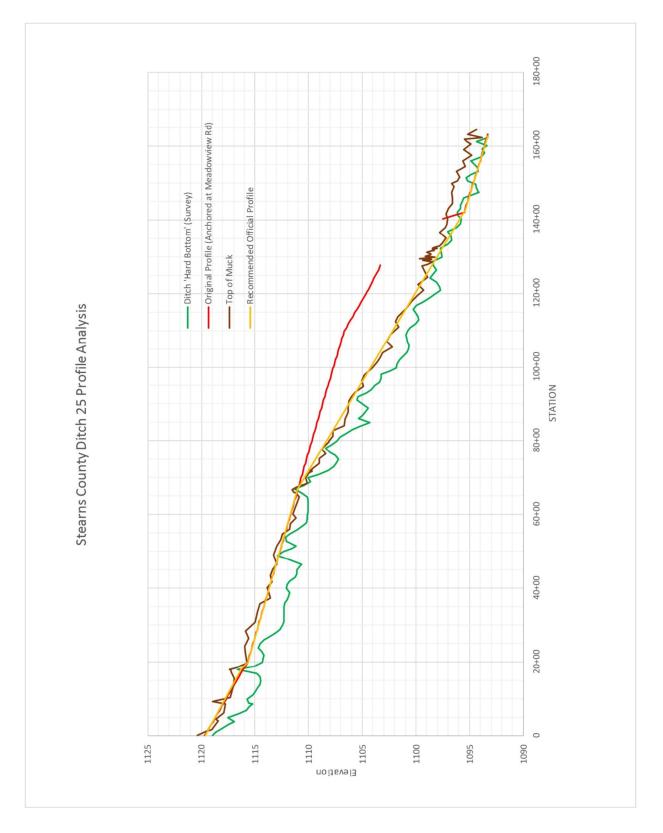

The alignment of the recommended profile follows the existing alignment of the ditch, as reflected in the survey. It runs from Station 0+00 to Station 163+12. The recommended official profile is detailed in the following table:

Table 2. Recomme	nacarronic
Station	Elevation
0+00	1119.6
17+76	1116.3
18+00	1116.3
20+00	1115.7
67+00	1111
142+70	1095.4
162+78	1093.3

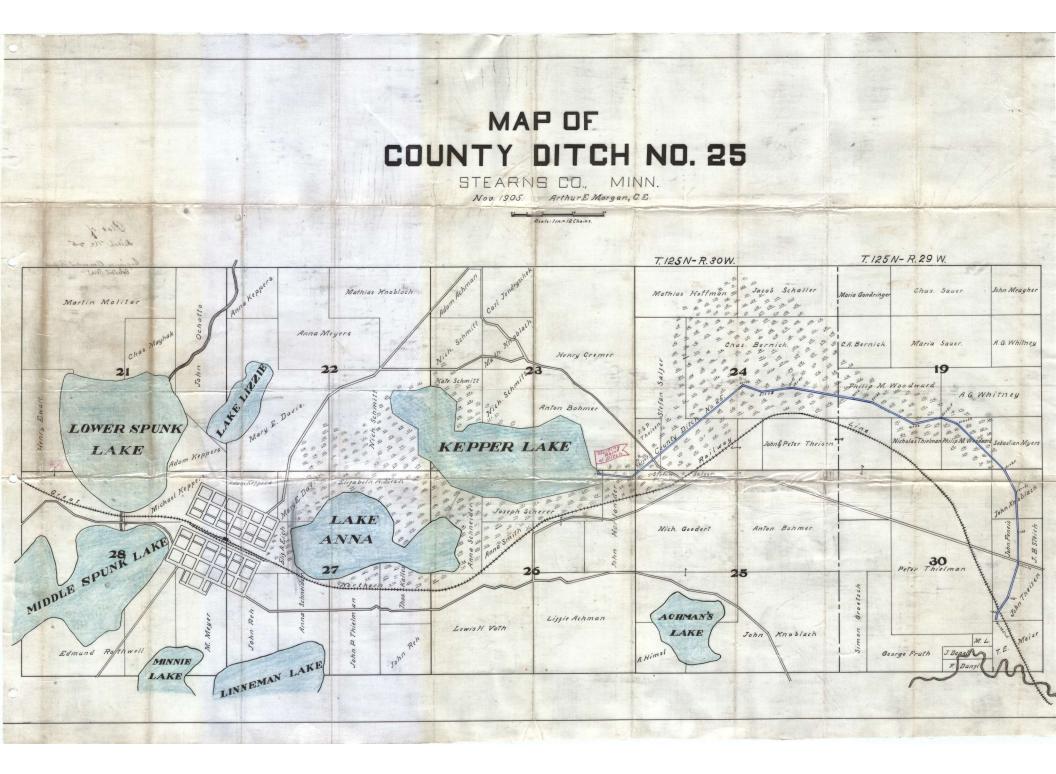
Table 2. Recommended Profile

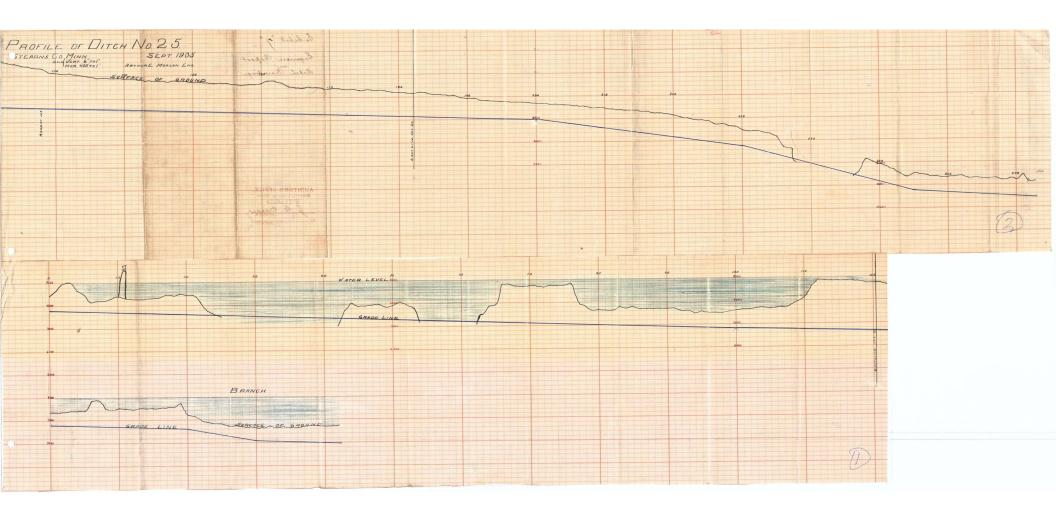
3.6.2 Comparison of Recommended and Current Profiles

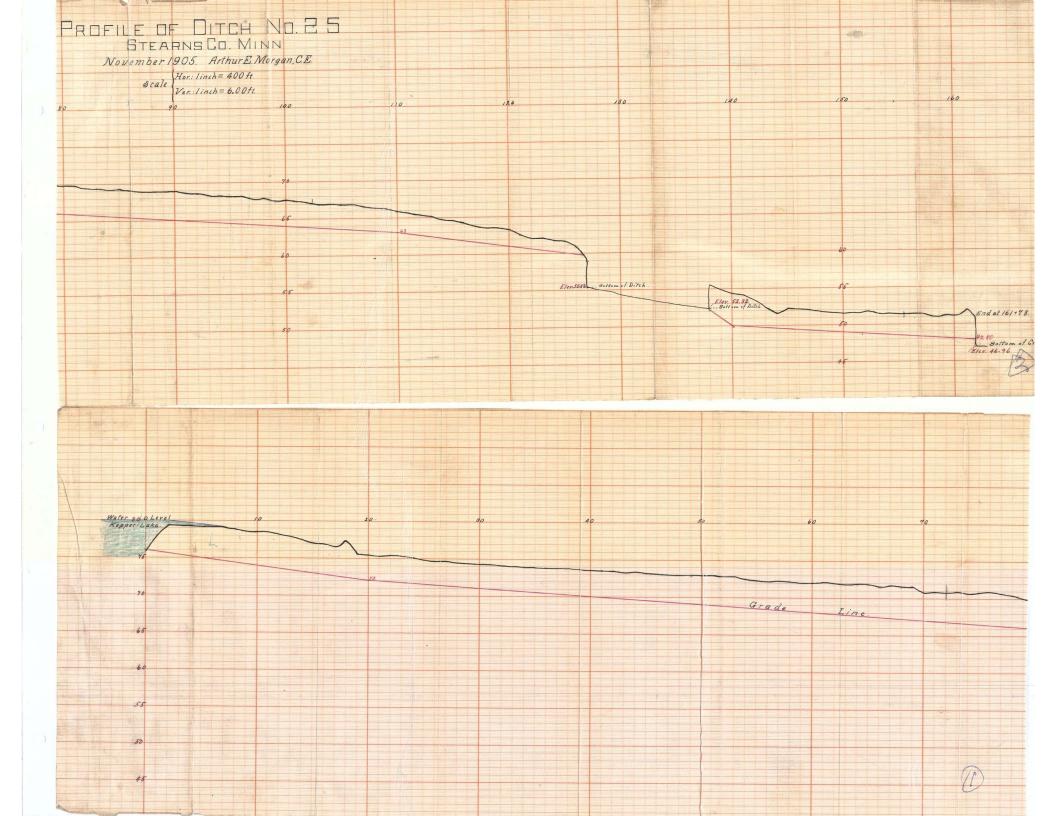
A graph showing the current ditch bottom (survey), top of sediment (survey), adjusted original design profile, and recommended official profile is provided on the following page.

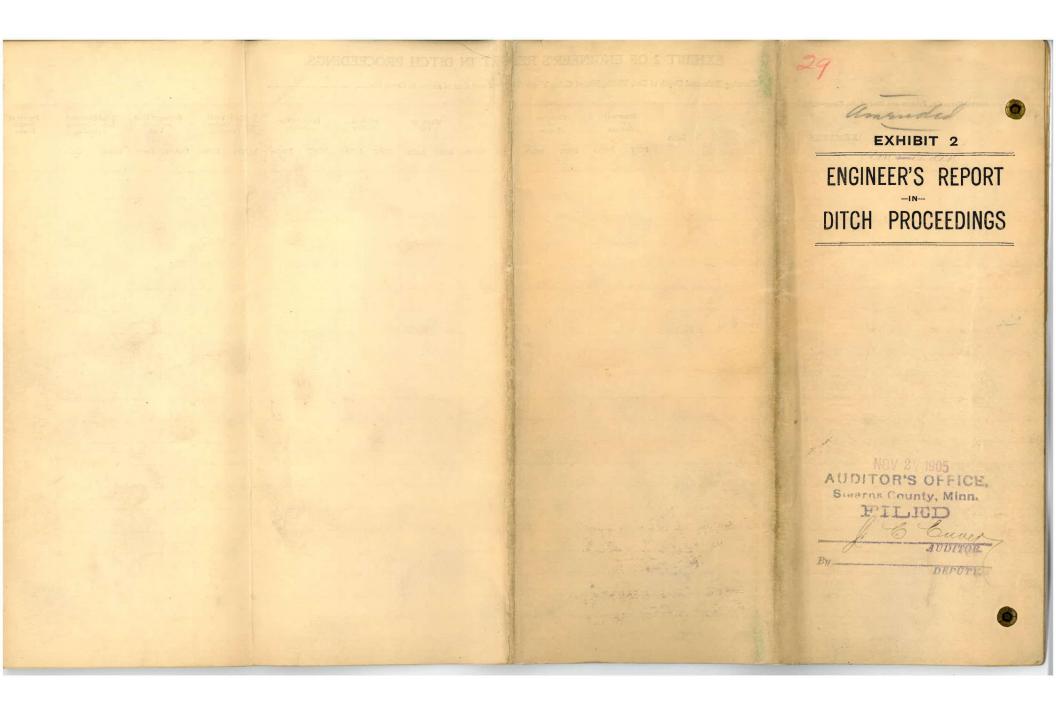
Figure 2. Comparison of Analyzed Profiles

3.7 Key Outcomes


3.7.1 Implications of Profile for Ditch Maintenance


As described above, the surveyed inverts of the Meadowview Road Culvert (among other data points) were used to set the elevations of the recommended profile. Currently, the runout elevation of the lake (according to the same survey) is approximately 4' higher in elevation than the culvert inverts. This indicates that water levels in the lake are being controlled at the ditch inlet, and not by the Meadowview Road culvert.


Downstream of the culvert, the recommended profile follows the original design profile slope, which places the recommended profile just below the current top-of-muck elevations over most of the next ~3000 ft. However, as can be seen in the profile chart, cleaning the ditch down to the recommended profile anywhere east of the Meadowview Road culvert would not change the controlling runout elevation of the lake, and in fact would not impact anything west of Meadowview Road. Even if potential long-term effects of ditch maintenance east of Meadowview Road are considered, the presence of the roadway and culvert at that location would prevent any potential erosive action (head cutting) from lowering the ditch bottom elevations at the lake outlet.


In summary, based on the site survey data and the preceding analysis, if the culvert elevations remain as they are, performing ditch maintenance east of Meadowview Road to a degree consistent with the recommended profile would not impact the runout elevation or normal water levels in Kepper Lake. Therefore, performing such maintenance would not necessitate the placement of an outlet control structure at the Lake outlet.

Appendix A – Original Ditch Records

Journal-Press Co., Prin	ters and Binders St. Cloud-9293				E.		1							4	Cubi	c Yards	Estima	ted Cost	Total E	stimated	Re
	REMARKS	Station	Elev	ation of rface	Eleva of Both	tion f tom	(Cut	Wid	ith at Fop	Wid Bot	th at tom	Area o Se	f Cross ction	in Pr	ic Yards Section eceding	per	Cubic Yard	Total E Cost of Prec		Ņ
BIT 2	KEMAKO		FEET	100ths	FEET	100ths	FEET	100t h s	FEET	100ths	FEET	100ths	FEET	100ths	YARDS	100ths	Dollars	Cents	Dollars	Cents	
138 439 0	YEENGHE .	Ů	75	80	76	00															
an in the second	00 0000	,	78	-	75	80	2	ro	6	20	4	00	11	20	2.	0 70		12/2	2	59	5
Summary of		2	79	41	7 5	60	3	80	Y	80		,.	22	40	6 <	220			7	78	2. VC
		3	79	34	75	40	. 3	90	7	90		P	23	20	5.	440			10	55-	H.
		4	79	27	75	20	4	10	8	10		11	24	80	8-1	90			11	11	e
in second		5	79	22	15	00	4	20	8	20			25	60	9 .	3 3 8		"	11	66	ø
		6	79	20	74	80	4	40	8	40		11	27	30	9.	790			12	24	h
		7	79	15-	74	60	4	60	8	60		11		00	10	430		11		04	1 60
	a. C. at 8+75	8	78	92	74	40	4	50		50		-11		10	10	580		"		22	12
1		9	78	5-8	74	20	4	40		40		r	27	30		260				83	Ja
		10	28	63		400		60		60		**		00		430		17		04	are
		11		- 54		80		20		20		U.		80		890		"		61	h
		12		22		60		60		60				00		890	1	1		61	in
		13		86		40		50		50		77		10		570		11	13	21	ail
		14		54		3 28	1.00	30	1	30				40		0 9 6 4 8 0		"		85-	N
		15		14		800	100	10		10		.,		480		180		"		47	m
		16	- 1. I.	94		2 80 2 6 0		00	Ű	. 00		ņ		400	1	040			11	30	Q.
D-4	· · / / / / / / / /	17 18		56		40		00		00				2 50		460			1		в.
	in middle of road. Stake set	18		-62	1-18	220		40		40		11		940	1000	610				01	
at 18+	7.	20		5.54		200		50	1	50		11		0 10	1	3 10				14	-
		de o	17		12		0		1	50					and the second se	980			229	The second second second second second	T

Jour	nal-Press Co., Printers and Binders St. Cloud-9293		EI	levation of Surface	Eleva o Bot	ation f	-	Cut	Width at Top	Widt	th at	Area of Sec	Cross	Cubic in S	Yards Section ceding	Estimat per f	ted Cost Cubic 'ard		stimated Section ceding	, Record Benc Marks
	REMARKS	Station	FEET				FEET	100ths	FEET 100ths				100ths	YARDS	100ths			Dollars	Cents	
OF	ENGINEER'S REP	. 21		5 29	77 (90	9	40	240	1	00		11.6	1.0	10		12/2	Ģ	14	
		22		5 42		50		60	760			19			60		144		32	
N	UISTONY HUTU	23		33+ 15=		70		60	760		"	20			40				68	.1
		24		511		60		50	7 50		N 11	20			90				49	rarat
		25		483		50	-	30	730				60		70				96	na
		26		4 68		40		30	730		15		60		90		"		61	ta
		27		466		30		40	740		"	19		70	40		te.		80	Jo
		28		451		20	3	20	730			18	60	70	40	•	"	8	. 80	al a
		29	2	441	21	10	3	20	730		,1	18	60	68	90		,,	8	61	has
		80	7.	4 3 4	71	00	3	30	730		"	18	60	68	90		,,	8	61	8
		31	7	4 28	70	90	3	40	240		,,	19	40	70	940			8	88	2.2
		32	7	409	70	80	3	30	230		4	18	60	70	40		"	8	- 80	Mar
		33	7	4 01	70	70	3	30	730		4	18	60	68	96		"	8	61	
		34	7.	386	70	60	3	30	7 8 0		,,	18	60	6	890			8	361	90
		35-	7	391	20	50	3	40	740	-	"	19	40		040		1.	. 8	80	73.
		. 36		382		40	5	40	740		"	19	40		90		"	8	99	11
		37		380		30	3	50	750		1.		10		810		"	9	/	el po
		38		375		20		60	760		"		90		-90		11	9		6.1
		39		368		10		60	760		"		90		40		17	9	61	0.1
		40	>	357	70	000	3	60	760		11	20	90	71	740	-	"	180	968	- 20

	showing Showing Co., Printers and BindersSt. Cloud-9293	Estimated Depti	l of Cut, width	, INO. OF CU	oic Tards I	Centoved and C			Steam			Main	
BIT 2	REMARKS	Station	Elevation of Surface	E	evation of Bottom	Cut	Width at Top	Width at Bottom	Area of Cross Section	Cubic Yards in Section Preceding	Estimated Cost per Cubic Yard	Total Estimated Cost of Section Preceding	Record o Bench Marks
	- Clark As		FEET 10	Oths FEET	100ths	FEET 100ths	FEET 100ths	FEET 100ths	FEET 100ths	YARDS 100ths	Dollars Cents	Dollars Cents	
S REPOR	ENGINEER'S REFO	41	735	8 6	990	370	770	4 00	2160	7870	12/2	984	
DCEEDIN	hitten booccan	42	73 5	4 6	980	370	770	11	2160	8000	"	1000	
JOLLDIN	INTROVA & HOLIN	43	732	6	970	360	760	"	2090	7870	"	984	
		44	733	7 6	960	380	780	11	2240	8020		1003	
		45	732	4 6	950	370	770	11	2160	8150	11	1019	
	a.C. at 46+53	46	731	0 6	940	370	770		2160	8000	tr.	1000	
		47	730	0 6	930	370	770	1,	2160	8000	1,	1000	
		48	72 9	4 6	920	370	770	11	2160	8000	11	1000	
		49	92 9	6.6	910	390	790		2320	8500	11	1037	
		5-0	728	5 6	900.	390	790	"	2320	8596	//	1074	
	a.C. at 51+55	57	729	6 6	8.90	110	810	"	2480	5890	4	1111	1.5
	G. S. 1 ft. South.	52	727	6 6	880	4 0 0	800	"	2400	9040	"	1130	
		53	728	2 6	870	410	810		2480	90 4.0	"	1130	
		54	724	8 6	860	390	790	11	2320	8896	"	1111	
		55-	>22	9 6	850	380	780	1	2240	8480		1055	
		56	721	6 6	\$ 40	3 80	780	11	2240	8300		1037	
		57	722	2 6	830	3 90	790	11	2320	8440		1055	
	Q. C. at 58+57	58	72 2	4 6	820	400	800		2400	8740	"	1092	
	a.C. at 59+40.	\$9	719	7 6	810	390	\$ 90		2320	8740	"	1092	
		60	719	7 6	800	400	800	//	2400	8740		10 93	-
										168060	2	21007	1-21

Т 2	ournal-Press Co., Printers and Binders St. Cloud-9293	Station	Elev	ration of rface	Eleva oi Bot	ation f tom =	Cut		Width a Top	t	Width at Bottom	Area o So	of Cross ection	Cubic in S Pre	Yards Section ceding	Estima per Y	ited Cost Cubic fard	Total E Cost of Prec	<i>lan</i> stimated Section eding	Record Benct Marks
	- name		FEET	100ths	FEET	100ths	FEET 1	00t h s	FEET 100	ths FE	ET 100ths	FEET	100ths	YARDS	100ths	Dollars	Cents	Dollars	Cents	
REPOI	ENGINEER'S REPO	61	17 9	12	67	94	42	0		0	400	9 .					184		4. 5.	tut
	DITON COOLERN	62		97	67		42		82		400		- 60		86		12/2		47	4 P
EEDIN	NUTZIONA UTIO	65		84	67		41		81		"		-60		30		"		85-	8
		64		86	67		43		83		"		40	1.1.1.1	80		"		66	ac
		65		81		50	48		83		"		40	1501	80		"		23	Lar
		64	71	51	67	40	41	0	81	0	11	24	80	N. C. P.	80		,,		8-5-	tan
		67	71	78	67	30	4 5	0	8 5-	0	11	28	8 10	98	00		"	12	25-	Vi d
124		68	71	60	67	20	# 4	0	84	0	11	2;	30	102	60			12	8 2	2º
		69	21	5-5-		10	4 5	-0	8 5-		"	28	10	102	60		<i>n</i>	12	83	2
		70		78	67		3 8		78		11		40	93	5-0				69	ta
1		71		85	66		40		80		"		00		90	-	11	10	74	. *
		72		82	66		40		80		"		00		90		r		11	ail
		73)4		92	66		42		82		ĸ		-60		80		"		48	N.
	a. b. at 75+6	75		63 75-		50	4046		8 U 8 S		"		40		80		".		48	66
		76		86	66		45		85	1.1	"		10	100			11 1		66	72.
		77		66	66		44		840		11		30	102			1.		82	62.
		78		43	66		42		82				-60		00		"		25-	. un
	a. C. at 79 + 88	79	70	03	66	10	39	0	79	0	•		320		40				30	13. 7
		80	69	78	66	00	3 8		78	0	,1	22	40	84	40			1.0	55	

	ournal-Press Co., Printers and Binders St. Cloud—9293		Ele	vation of urface	Elevat of Bott	tion om	c	Cut	Wid · 7	ith at Fop	Wia Bo	dth at ottom	Area o Se	of Cross ection	Cubic in S Pre	c Yards Section ceding	Estima per	ated Cost Cubic Yard	Total Es Cost of Prece	stimated Section eding	Record o Bench Marks
BIT 2	REMARKS	_ Station	FEET	100ths	FEET	100ths	FEET	100ths	FEET	100ths	FEET	100ths	FEET	100ths	YARDS	100ths	Dollars	Cents	Dollars	Cents	
S REPO	ENGINEER'S REPO	81	69	75	65	90	8	90	7	90	4	00	2.3	20	84	40		12/2	10	5-5-	
CEEDIN		82		43	6 5-			60		60		11	20	90	81	70		<i>n</i>	10	21	
OLLDIN	NING PROVERING	8-3		38	6 5	70	8	70	>	70		"	21	60	7 9	70		r	9	84	
		8-4	6 ;	20	65	60	3	60	7	60		<i>ir</i>	20	90	78	70			?	84	
		85	69	33	65	50	3	80	7	80		11	22	40	80	20		"	10	02	
		56	69	10	65	40	3	70	7	70		11	21	60	81	50		,,	10	19	
		87	6 %	86	65	30	3	60	7	60		1,	20	90	78	20		<i></i>	9	84	
		88	68	89	65	20	3	70	7	70		"	21	60	78	70		"	9	84	
		89	6 9	894	6 5	10	3	80	7	80		11		40	81	150		"		19	
		90	6	889	65	00	3	90	7	90		11		320	8 2	440		.,		5-5-	
1.000	a.C. at 91 + 96	91	6 1	- 69	6 4	90	3	80	TT.	80		"		240		440		<i>C</i> ,,		5-5-	
		92		8 1-5-	64	80	3	80		80	-	"		240		300		"		87	
		98		533	64	20	3	60		60		n		90	N. T	0 20		11		02	
		94		833	64	60	3	20		70		"		60		870				84	
		95		814	64	50	3	60	7	60	1	1.		96		870		".		84	
		96		8 19		40		80		80	-	"		240		020		41		02	
		97	6.	> 77		30		50		5-0		1.	Tell-	010		870		"		84	
		98		7 85-	64			70		70		"		60		680		12		960	
	Q.C. at 99+ 81.5	99		749	64			40		40		11		940		590				49	
		100	6.	756	64	00	3	60	7	60	1	11	x	090		460		• •		82	-
										-			-		1599	110			177	796	

	Showing Estimation Structure St. Cloud-9293	alea Depli	I OI Cut, w	1611, 140	. or educe	1 4105 1	Kenioved	and Co.	,									Ma	in
	REMARKS	Station	Elev. Sur	ation f face	Eleva of Bott	tion f tom	(Cut	Width at Top	Wi	idth at ottom	Area o Se	of Cross ection	Cubic in S Prec	Yards Section ceding	Estimated Cost per Cubic Yard	Total E Cost of Prec	stimated Section ceding	Recor Ben Mar
2	ALMARKS	Guilon	FEET	100ths	FEET	100ths	FEET	100ths	FEET 100ths	FEET	100ths	FEET	100ths	YARDS	100ths	Dollars Cents	Dollars	Cents	
EPO	Ask Ghishidis	101	67	40	63	90	3	50	750	4	00	20	10	75	90	124	9	49	
DIN	heronnoo untin	102	67	07		80	3	30	7 80		,,	18	60	21	70		8	96	2 G
DIN	antinna pain -	103	66	82	63	70	3	10	710		11	17	20	66	30		8	29	ww
	a.C. at 104+22	104	66	87	63	60	3	80	7 8 0		4	18	60	66	30	,,		29	rug
1	a. C. at 104+22 at 104 g. S. 2 H. Wly. Line Stake in Ditch	105-	66	77	63	50	3	30	730		"	18	60	63	90	"	8	61	2
1		106	66	82	63	40	3	40	740		11	19	40	70	4.0		8	80	7
		107	66	5-2	63	30	3	20	720		1.	17	90	69	. 10			64	Je
		108	66	42	63	20	3	20	720		"	17	90		30	·		29	rac
		109	66	27	6 3	10	3	20	720		"	17	90	66	; 30			529	ha
		110	65	80	6 8	00	2	80	680			15	- 10	61	10			764	·z
		111	65	67	62	80	2	90	690		77	13	- 80		20	"		7 15	ail
		112	65	85	6 2	60	2	80	680		n	15	-10		720			7 1 5-	72.
F.		113	65	22	62	40	R	80	680		11		-10		-90	п		699	R 1
	1.	114	. 64	75-	6 %	20	2	60	660		"		880		850	"		69	2. 2
11		115-	64	5-7	62	00		60	660				380		10	4	12	6 3 9 6 0 9	10
		114	64	17	61	80	2	40	640		1.		2 5-0		870				2
		117	63	82	61	60	L	20	620		"-		120		890			549	
		118	63	5-5-	61	40		20	620	-	17		120		50	"			m.
		119	63	45-	61	20	-	230	630		"		180		260	.,		532	6.
		120	63	25	61	00	٤	30	630		11	1	180	4.	370	'		722	

	irnal-Press Co., Printers and Binders St. Cloud—9293	71 P	Elev. Sui	ation of rface	Eleva of Bot	tion f tom		Cut	Widi T	th at 'op	Wid Bo	ith at ttom	Area of Cross Section	Cubi in Pr	ic Yards Section receding	Estimated Cost per Cubic Yard	Total E Cost of Prec	stimated Section ceding	Record o Bench Marks
2	REMARKS	Station	FEET	100ths	FEET	100ths	FEET	100ths	FEET	100ths	FEET	100ths	FEET 100ths	YARDS	100ths	Dollars Cents	Dollars	Cents	
REPO	HIN CHIERONI			48	(()	80	,	20	4	70	ų	00	820	3	700	124	4	62	
CDIN	Q.C. at 121+35	121 122		98	60			50		50		"	710		830	, ,		5-4	
EDIN	INTER HOUR	123		09		40		70	5	70		,,	820	2 :	8 30	"	3	54	
		124		82	60	20	1	60	5	60		a	776	2	940		3	67	
1		125-	61	74	6 0	06	1	70	5	70		//	820	2 :	9 40	11	3	68	
	In old ditch. J. S. 2 H. E.	126	60	90	59	80	1	10	5	10		11	500	2 4	440	1	3	05	
	Q.C. at 127+91	127	5-8	85	5-9	60		1							930	1	1	16	
		128									-							-	
		129													-		-		
		130																	
		131				-													
		1.32					1+												
		133						-										12.2	
		134									-	-							1
-		185				-	14	+									-	1-1	1-1
2.1		196								-									T.E.
		137											1380						
	a.c. at 138	198		5.5.9			2			60		. "	2400		0 0 0			875	
	the second second second second	139		97		0000		440		40		"			500			187	10 15

	Showing Esti	mated Depth	of Cut, Wi	idth, No.	of Cubic Ya	ards Ren	noved an	d Cost	of Same, in Di	tch No. 25	- al al						an.
um	nal-Press Co., Printers and Binders St. Cloud-9293		Elevat of Surf	tion ace	Elevation of Bottom	n	Cut		Width at Top	Width at Bottom	Area of C Sectio				Estimated Cost per Cubic Yard	Total Est Cost of S Prece	imated Re Section H ding M
2	REMARKS	Station	FEET	100ths	FEET 10	00ths F	EET 10)0ths	FEET 100ths	FEET 100ths	FEET 1	100ths	YARDS	100ths Do	ollars Cents	Dollars	Cellis
EPC	ENGINEER'S REM	141	5-4	06	49	90	42	.0	820	400	25	60	98	. 00	12/2	12	25-
		142	5-3		49 2		36	0	760	p .	20			10		10	
DIN	עווטה האטנבבטו	143		42	49	1.00	2.7		670	<i>u</i>	14			40		1.000	92
	Q. C. at 145+79	144 145		78 34	49		2 i		620		15			000		6	25-
	U. C. at 145 + 19	145		24	49		2	50	. 680		15			720			15-
		147		95-	49		2.		670	~	14			460			5-2
		148 149		· 76 · 58	49. 49	1.00	26		6 5 0			10		980			522
		197		160	49	00	2	60	660			80		980			523
1		151	51		48 48			70	670 710			40	100.00	220 850			731
		15-2 15-3		1 90	48 48			70	670		14	40	5	8 5-0			731
		154		1 5-8	48			08	700			50		720 980			7 1 5-
	Q.C. at 155	155		1 37	'	40		90	690 710			720	1 11	116		-	764
		15-6		1 75		31		13	710			720		370			786
	· · · ·	158		070		20		70				40	1.11	850			747
	A A .4.11	15 9 16 0		1 27		10		20			1	65-0	_6	870			296
. 1	Q. C. at 160	160)	100	10									3 50		15	a 43

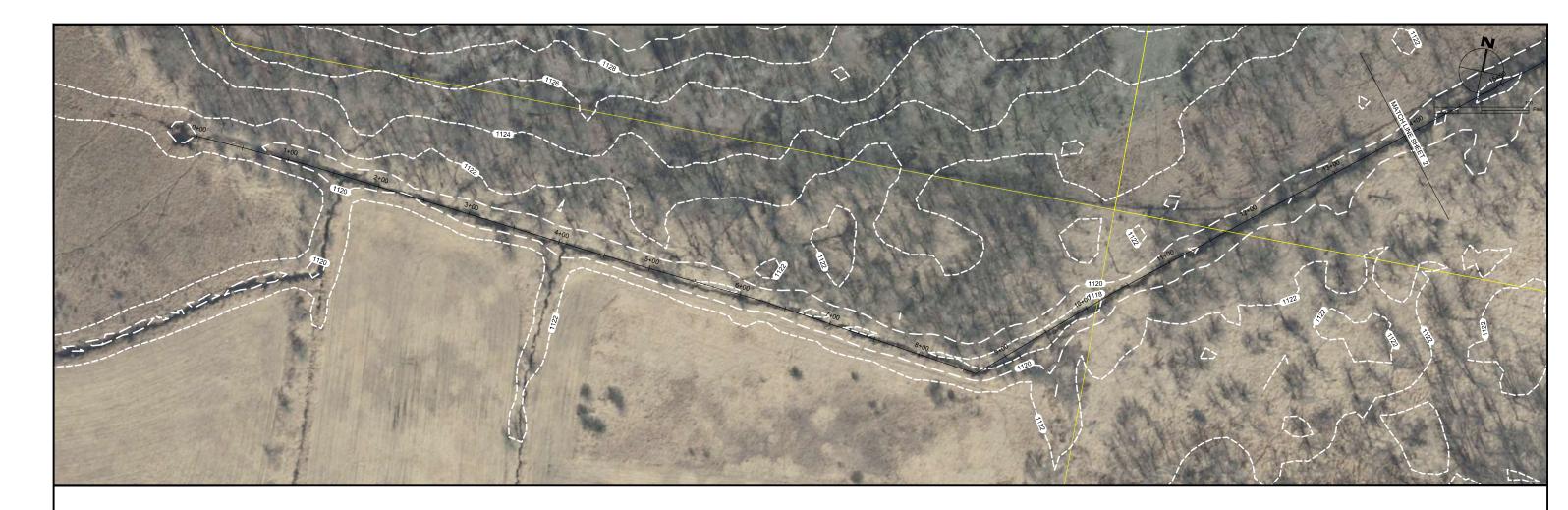
	DEMARKO		Station	Ele	vation of urface	Eleva O Bot	tion f tom		Cut	Wid T	th at `op	Wid Bo	ith at ottom	Area of Sec	Cross	Cubic in S Prec	Yards ection reding	Estima per Y	ated Cost Cubic Yard	Total Es Cost of Prece	timated Section eding	Re] /
2	REMARKS		Station	FEET	100ths	FEET	100ths	FEET	100ths	FEET	100ťhs	FEET	100ths	FEET	100ths	YARDS	100ths	Dollars	Cents	Dollars	Cents	
REPO	1938 CREMERS REP.		161	5-8	. 16	47	90	4	30	8	30	4	00	26	40	79	40		12/2	9	93	2
EEDIN	In ereck.		161+78		70	47				6	70			15	80		90		-		61	tone
	Resource Line 1															140	30			17	54	rala?
		-					-											T				dan
1			N.										•									no
1								Jolo	il.	eu	4d	ls =				11329	9.50	-+				rhed
1								"	+	cal	Ł						J.		Ø	41416	16	ma
																						X
													4		t							f an
1							*	4				-										the a
								-					-				-			+++		gene
1.1		-						-														19 1
			-					1														en :
		1	-					1.1									1					5.
									1		-					14						el.
																						m

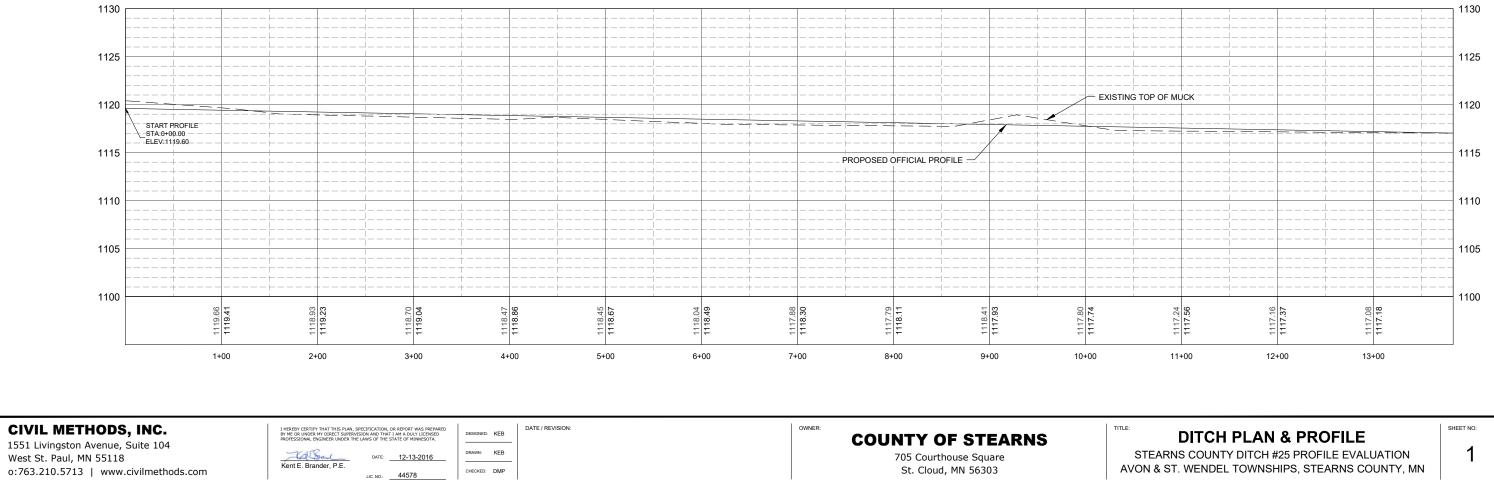
Appendix B – Soil Boring Records

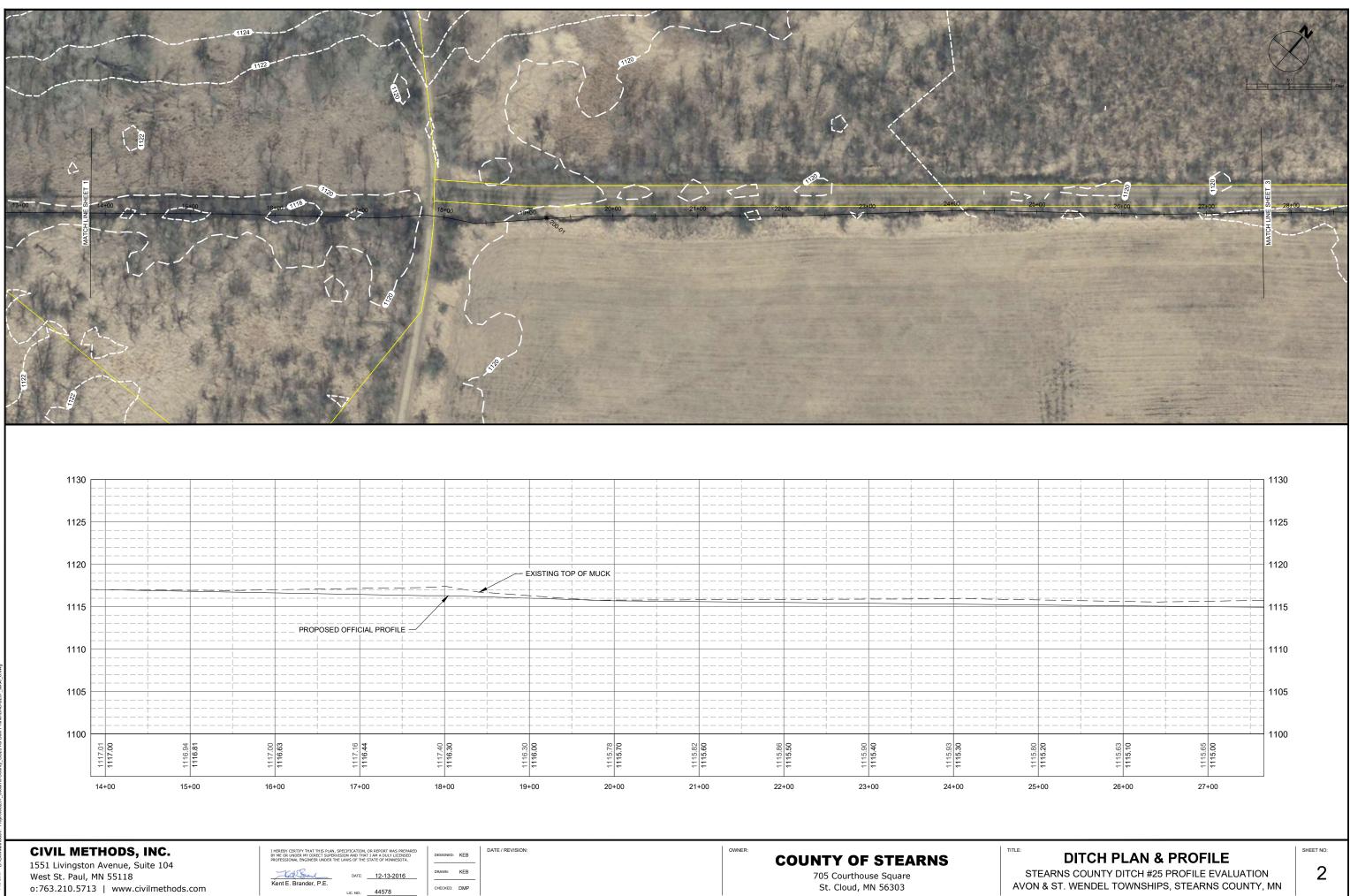
	11-15-16	
200-16		
20016		-
	- 30" Boring -	_
200-15	soil Transition	
	-26" Bore	
	- 1" white silt	
	- 1"- 6" Peat	
	6" - 26" Sand - Black silt	
200 -14	Soil transition	
	24" Bore	
	14"- White day	
	10"- Black-sand-Silt	
700-13	SGIL TRANSIZION	
200 , 3		
	ZY" BORE	
	1"- CLAY	
	4" - PEAT	
	24" - BLACIC SILT.	

		17 (* 1999) - San

			11-15-16 05. Cw. JB.
		Soll Trasition	
	200-12	35 Bore	
		2" clay	
		33" Black sand s	5174
		soil Transition	
	200-11	16 " Bore	
		all Gravel -	No Picture.
	200-10	soil Transition	
	200 10	24 "Bore	rc
	4" clast	zo" Black Sanc	1 0.14
	1 01004	20 BIACK Sand	5117
	700 00		
	200-09	Soil Trans,	FION
1		26 Bore	
		2° clay	
		24" Black Sand	5,17

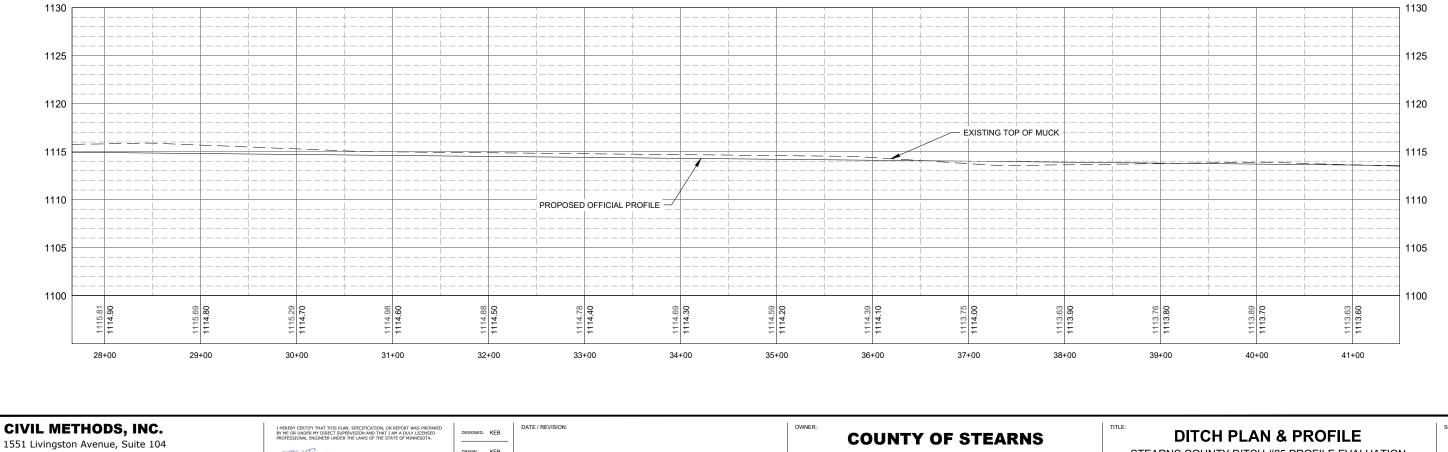

				DS.CW	JB
200-08		Soil	Tiansi	tion	
	60'	Bor	e silt		
	60"	Black	e silt		
			1		


			-	11-15-16
				DS.C.W JB
	200-08		Soil Trans	ition
		60'	Bore	
		60"	Black Silt	
±			1	11-16-16
	200-07			Dela
	200-01		Soil Transition	A
		- 11	36" BOBR	
			clay	
		34"	Black SIH	
				at.
	200-06		Soil Transiti	,
		24	"Bore	
*		12."	Black clay	
		12	Black Sand	
		5 m		
			1	
	200-05	15 .	Soul Transition	
		48	"Bore Clay	
		15.,	clay	
		36	Black Sand S	alt


					-
				11-16-16	Ds cu
200-04		Soil -	Transitio	u	
	60	Bose			
60''	- Sand	Gravel	silt		
 			Stay 1	in cylin	dec
			icture.		
200-03			ransitio	u	
		" Bor			
	S.,	clay			4
		Peat		4	
	10"	Black	Silt Sa	ndi	
500-05	2 Sc	il Tra	nsition	G.	
		Bore			
			, Roch		
		To Has			
		Go De	eper		
			2		
					2

		7					11-16-10	200
			200-0	1	Soil	Transitio	11-16-10	CW
					24"	Borp.		-
				S "	clay			
				6"	Peart			
				16	Muck -	- silt		1
		8						
		D Z Z						
		ETZGE						¥.
		ō _						
	,							
					N:			
							-	
								,
				(And And And And And And And And And And				

Appendix C – Plan and Profile Sheets



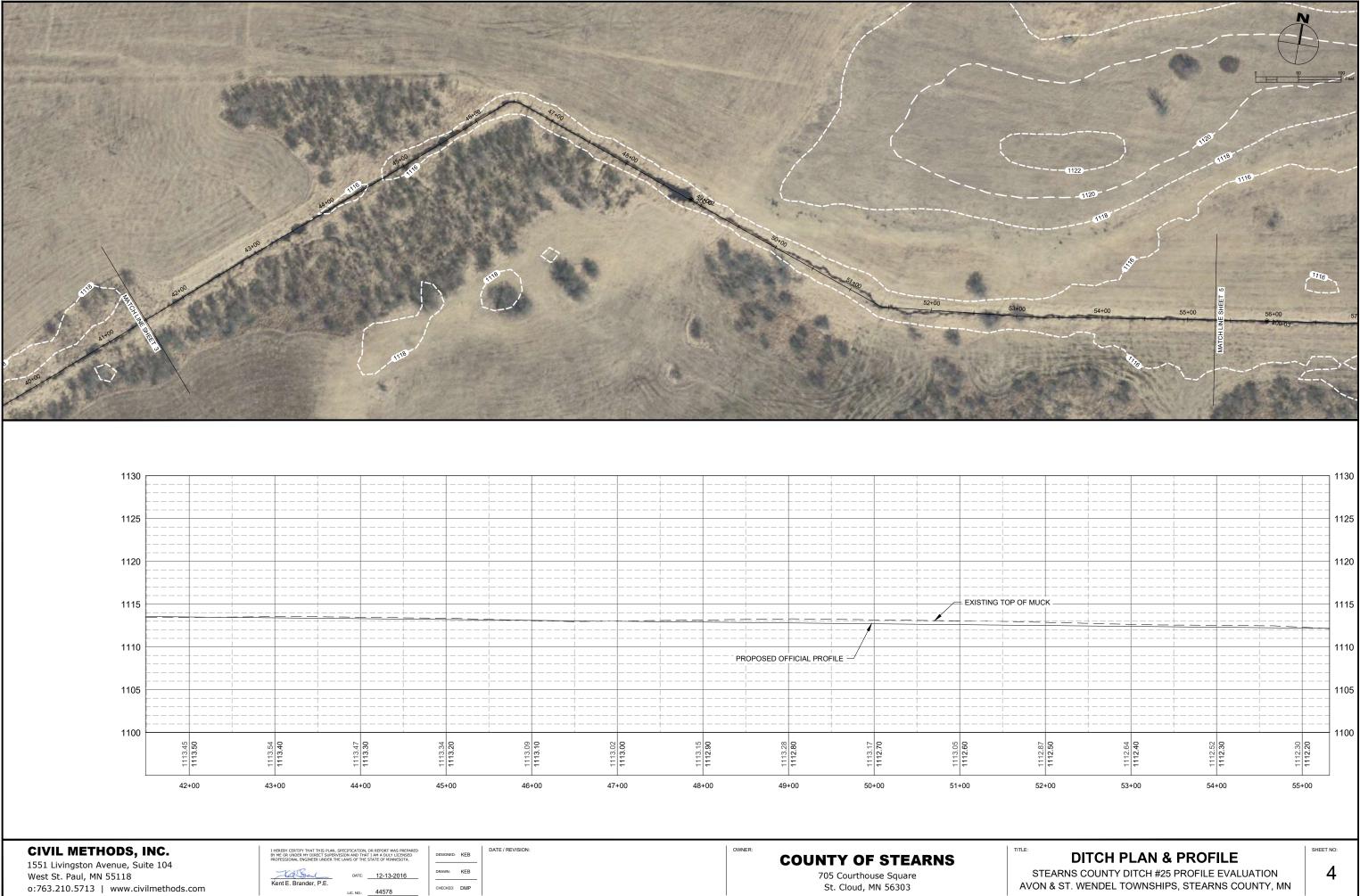
Kent E. Brander, P.E. 12-13-2016 CHECKED: DMP 44578 LIC. NO .:

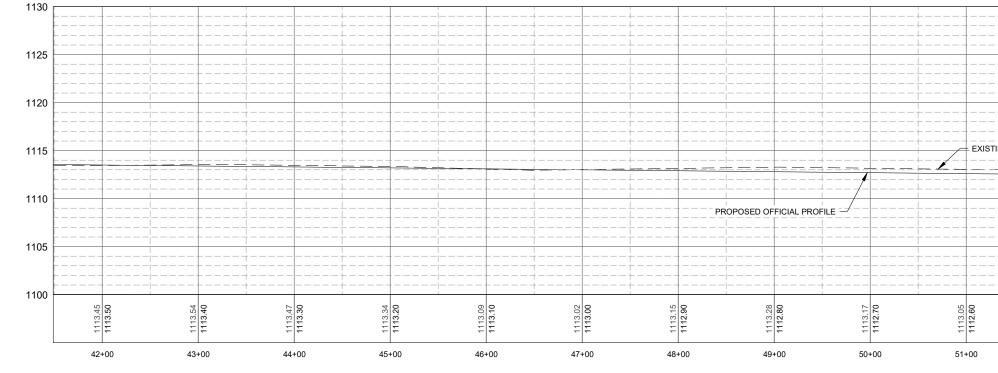
St. Cloud, MN 56303

AVON & ST. WENDEL TOWNSHIPS, STEARNS COUNTY, MN

1551 Livingston Avenue, Suite 104 West St. Paul, MN 55118

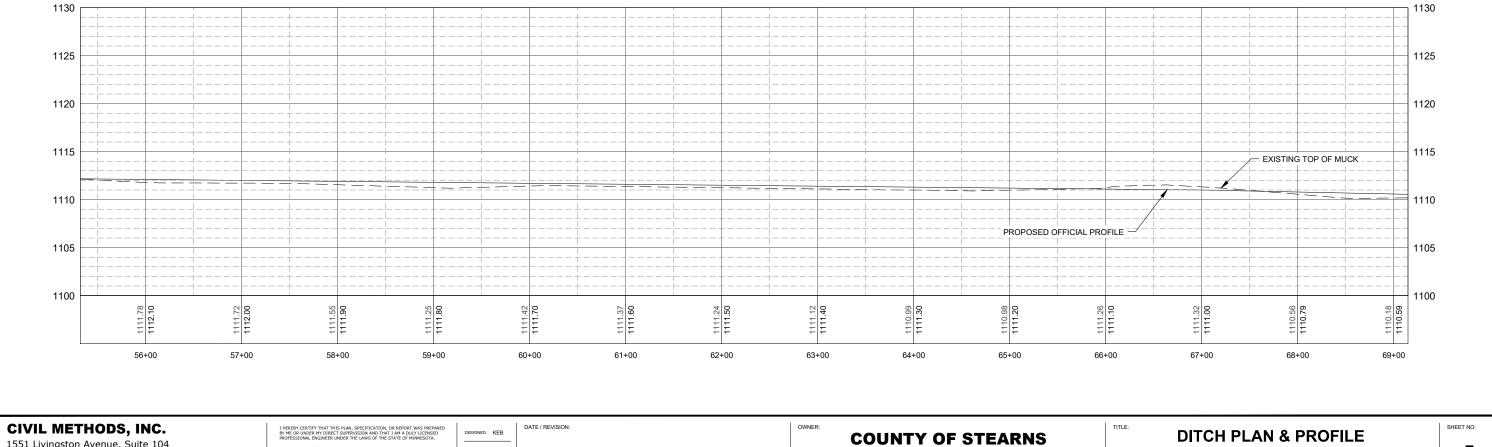
	33110
:763.210.5713	www.civilmethods.com


Kent E. Brander, P.E. DATE: 12-13-2016 LIC. NO .: 44578


DRAWN: KEB

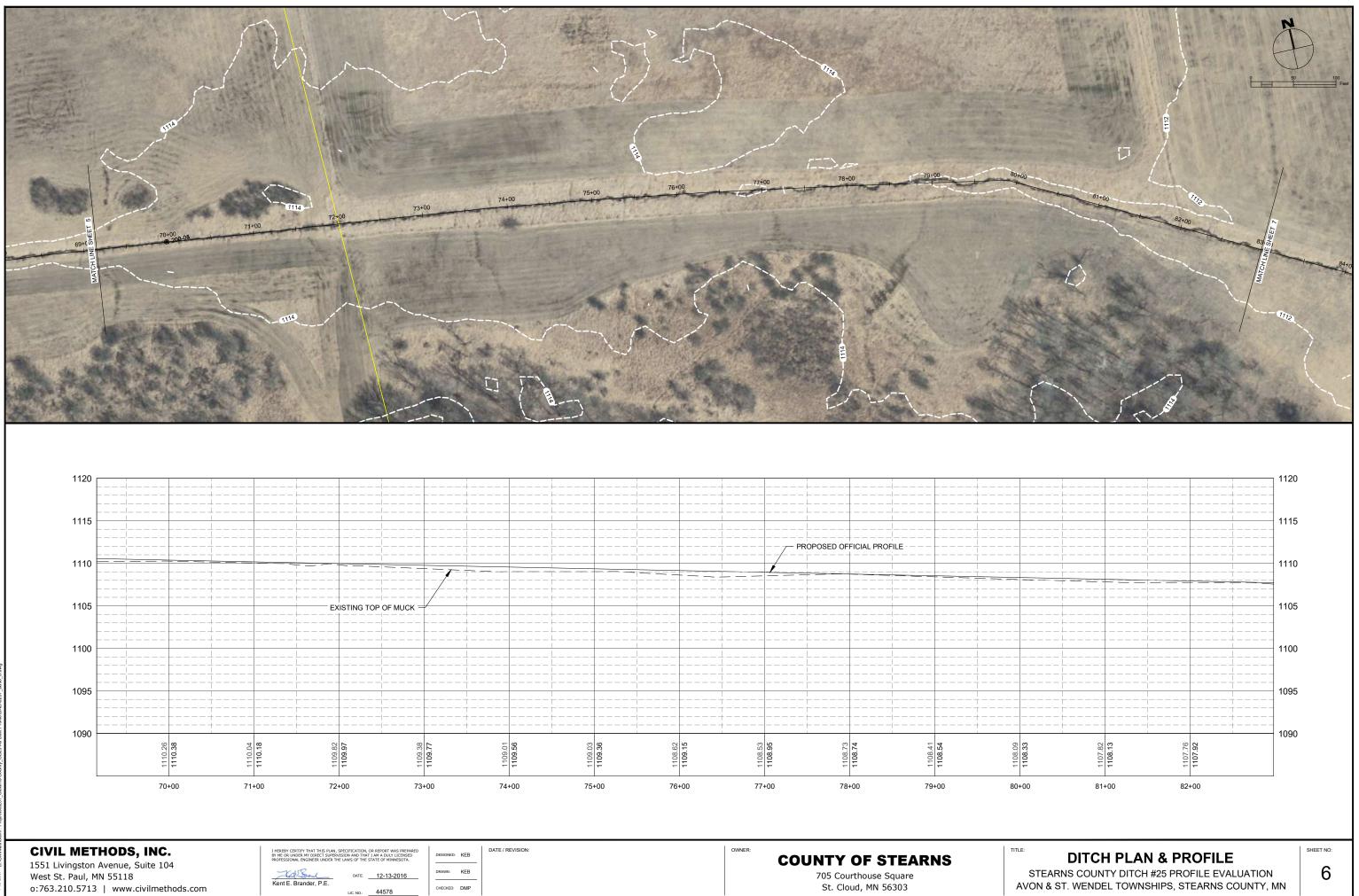
CHECKED: DMP

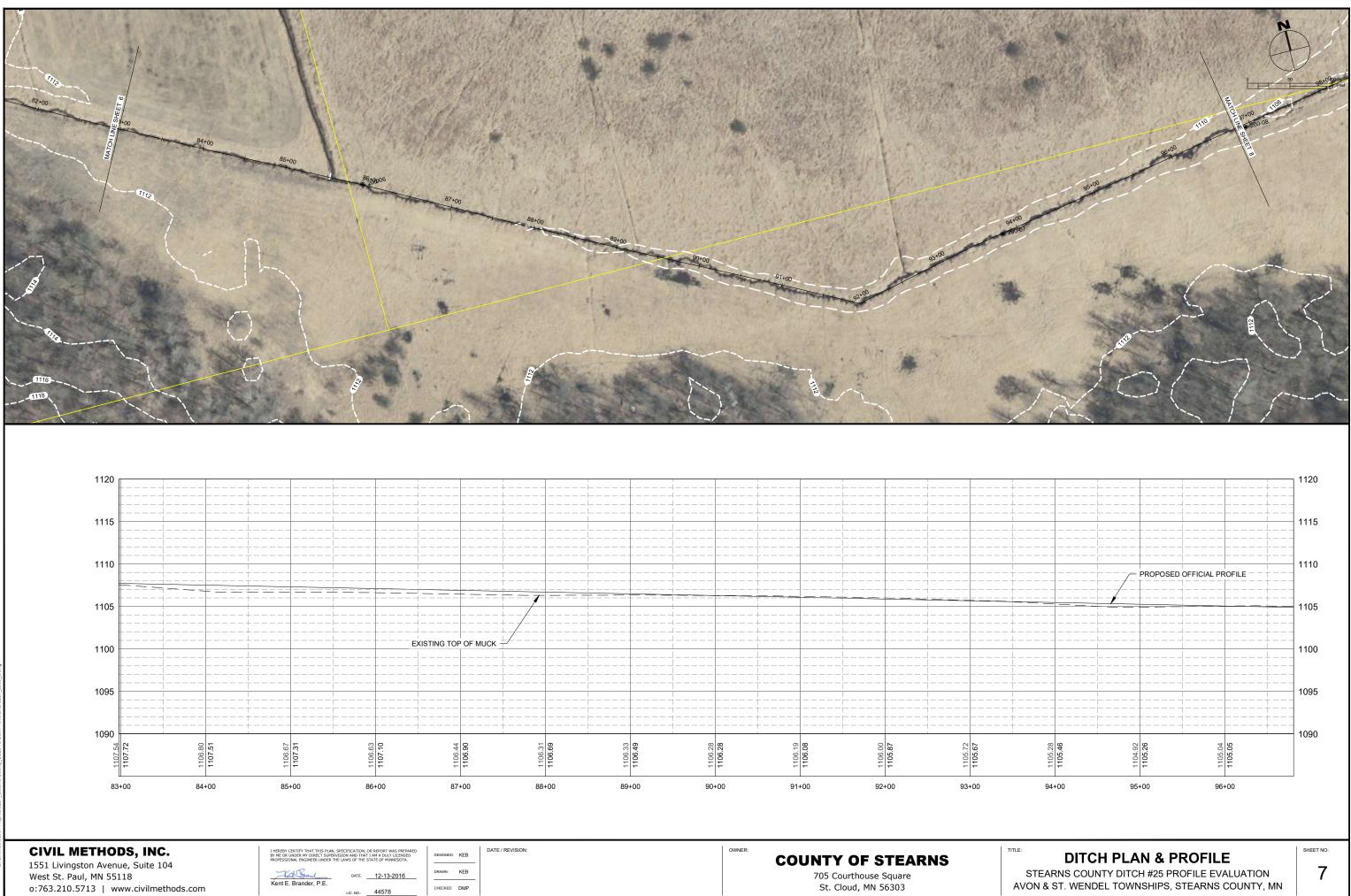
705 Courthouse Square St. Cloud, MN 56303


STEARNS COUNTY DITCH #25 PROFILE EVALUATION AVON & ST. WENDEL TOWNSHIPS, STEARNS COUNTY, MN SHEET NO:

I HEREBY CERTIFY THAT THIS PLAN, S BY ME OR UNDER MY DIRECT SUPERVI PROFESSIONAL ENGINEER UNDER THE	SION AND THAT	T I AM A DULY LICENSED	DESIGNED:
Ked Barl	DATE:	12-13-2016	DRAWN:
Kent E. Brander, P.E.	LIC. NO .:	44578	CHECKED:

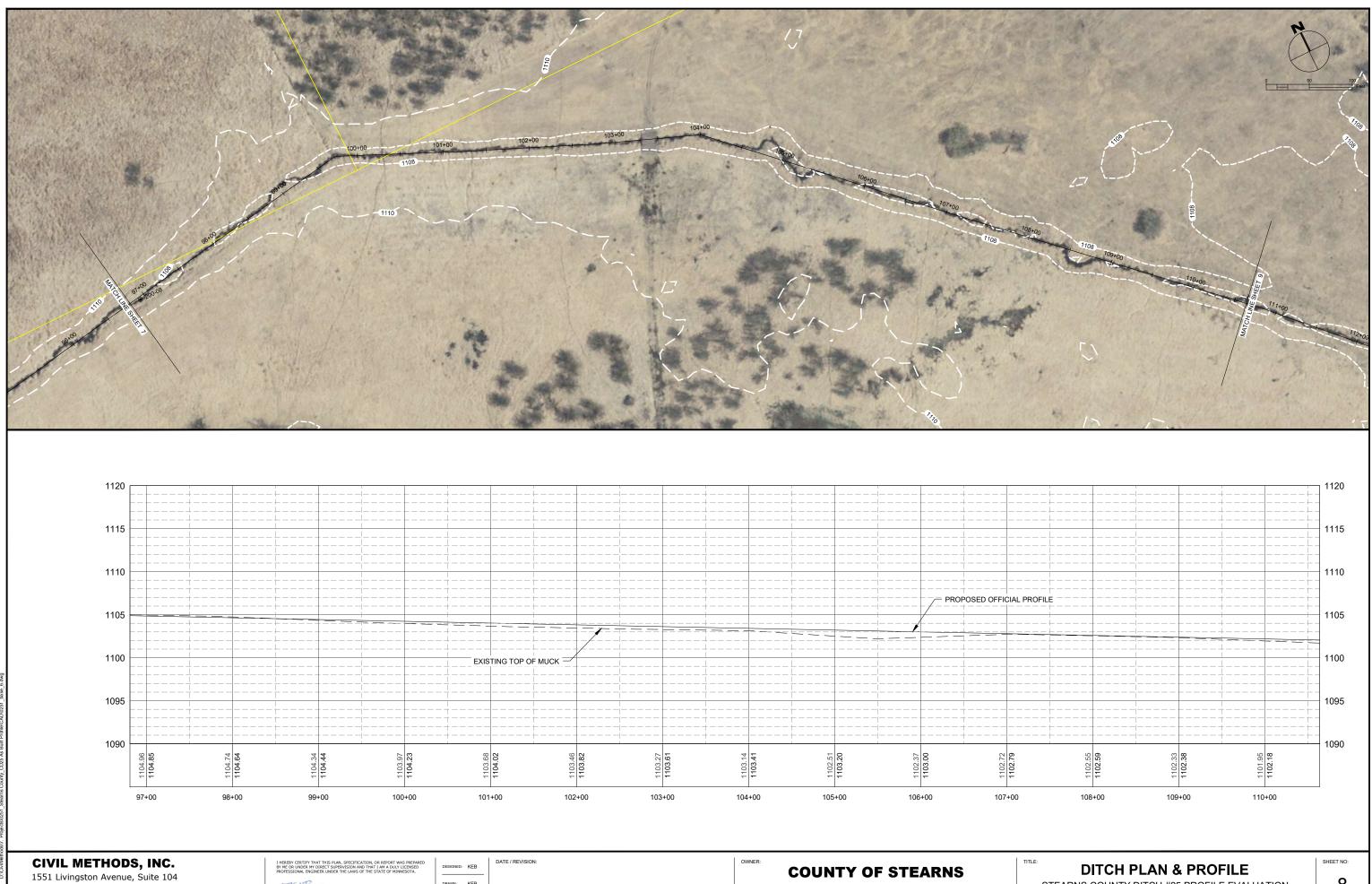
1551 Livingston Avenue, Suite 104 West St. Paul, MN 55118 o:763.210.5713 | www.civilmethods.com


Kent E. Brander, P.E. 12-13-2016 44578 LIC. NO .:


DRAWN: KEB

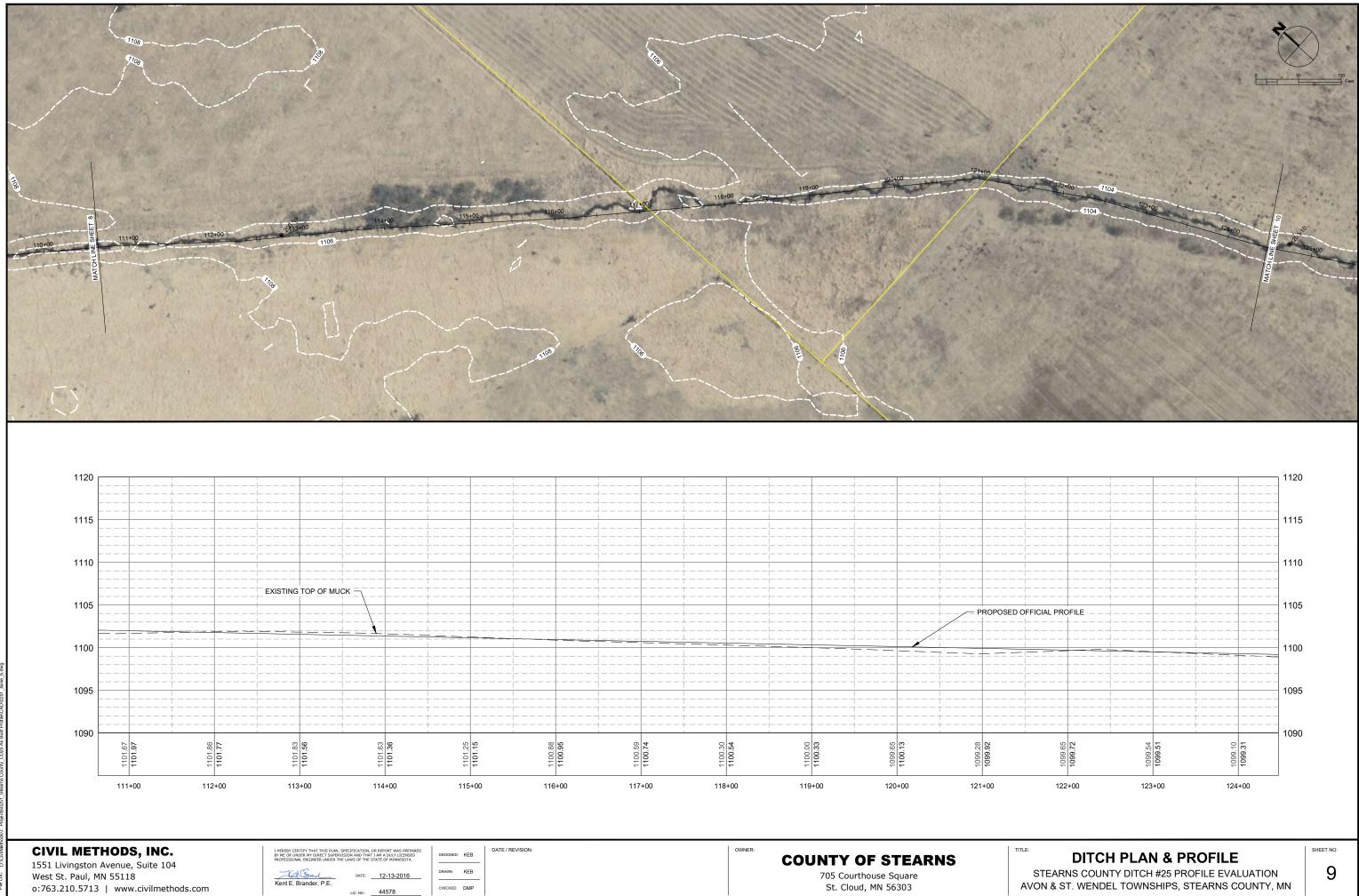
CHECKED: DMP

705 Courthouse Square St. Cloud, MN 56303

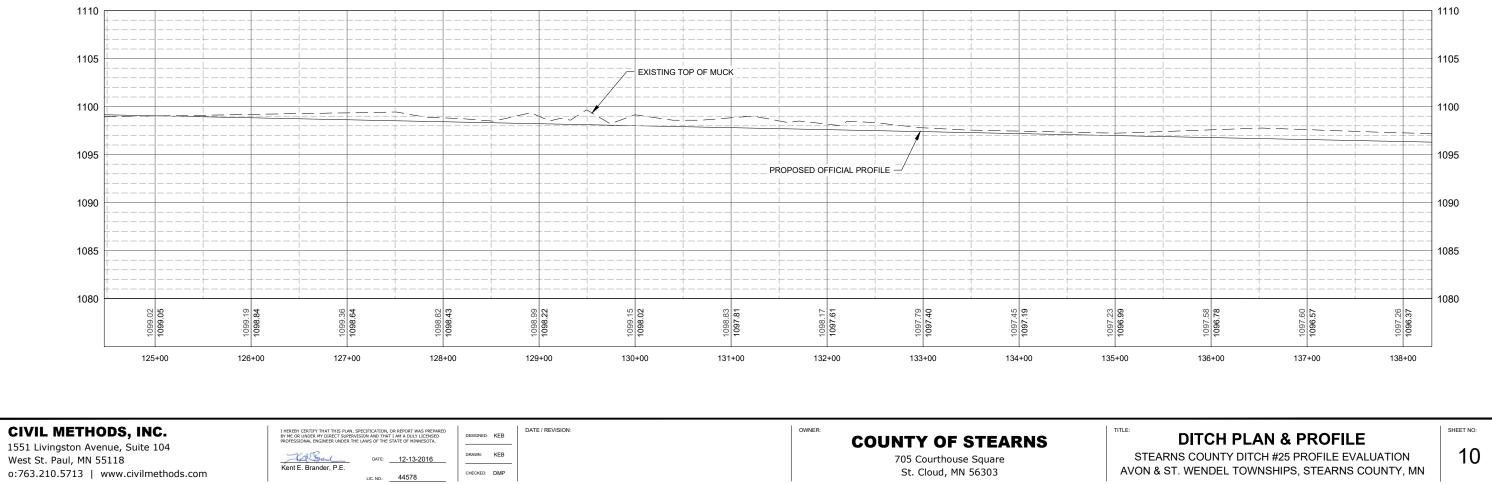

STEARNS COUNTY DITCH #25 PROFILE EVALUATION AVON & ST. WENDEL TOWNSHIPS, STEARNS COUNTY, MN

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	DESIGNED:	KEB
DATE: 12-13-2016	DRAWN:	KEB
Kent E. Brander, P.E.	CHECKED:	DMP
LIC. NO.: 44578		

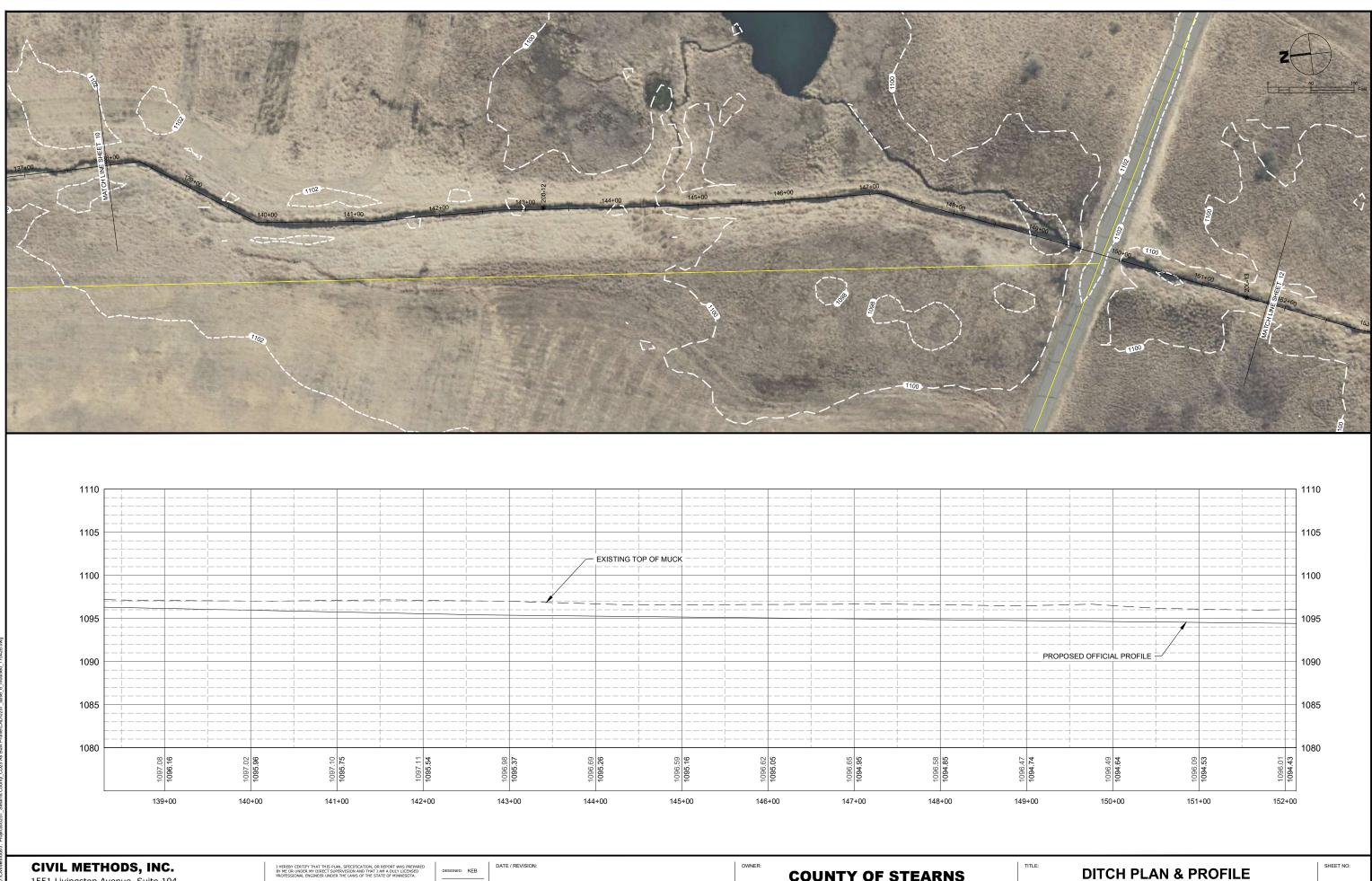
St. Cloud, MN 56303


1551 Livingston Avenue, Suite 104 West St. Paul, MN 55118 o:763.210.5713 | www.civilmethods.com

I HEREBY CERTIFY THAT THIS PLAN, S BY ME OR UNDER MY DIRECT SUPERVI PROFESSIONAL ENGINEER UNDER THE	SION AND THAT	T I AM A DULY LICENSED	DESIGNED:
Had Bank	DATE:	12-13-2016	DRAWN:
Kent E. Brander, P.E.			CHECKED
	LIC. NO .:	44578	CHECKED:

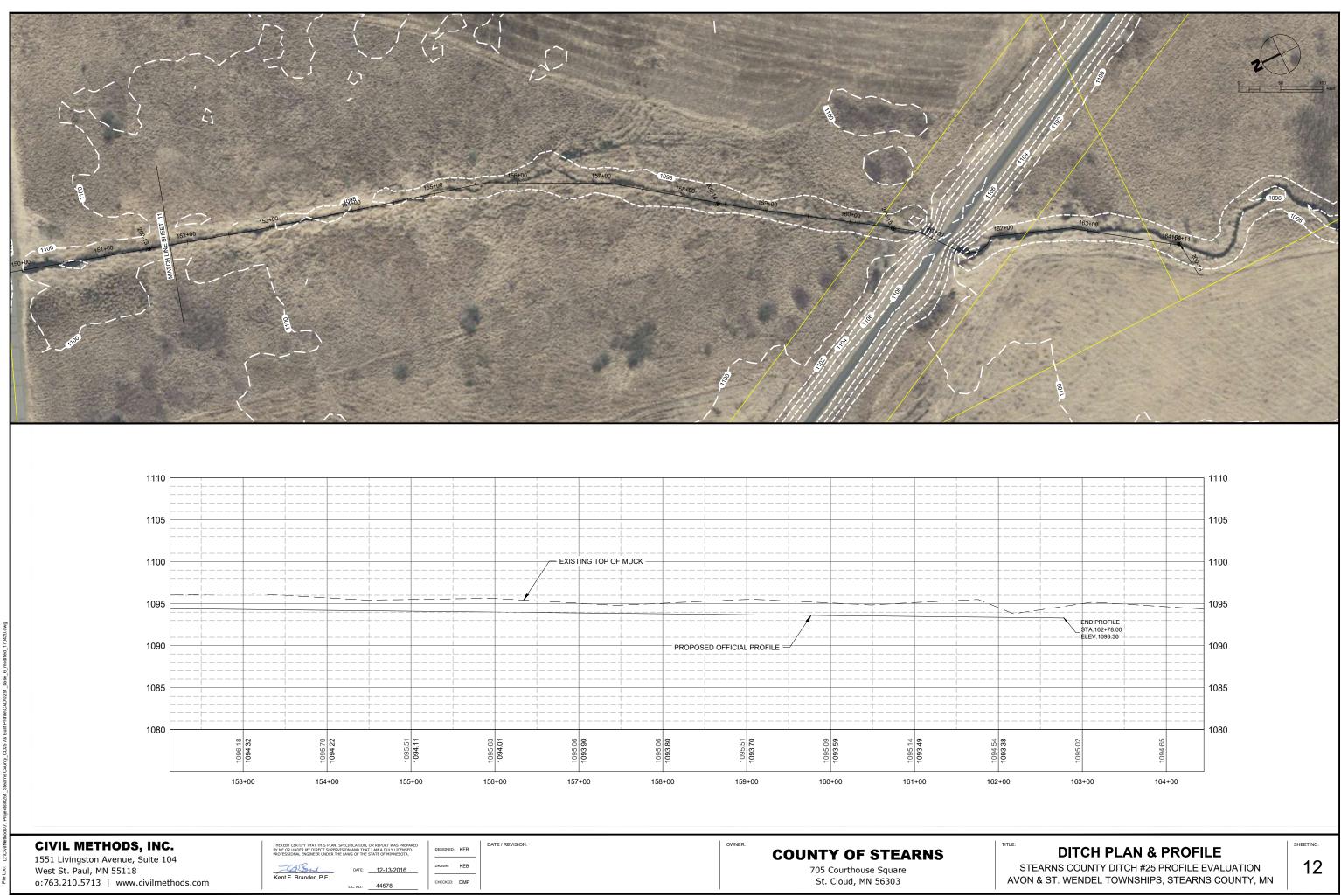

KEB DMP

705 Courthouse Square St. Cloud, MN 56303


STEARNS COUNTY DITCH #25 PROFILE EVALUATION AVON & ST. WENDEL TOWNSHIPS, STEARNS COUNTY, MN

iue, Juile 104	
118	Tede
ww.civilmethods.com	Kent E. Bra

1551 Livingston Avenue, Suite 104 West St. Paul, MN 55118 o:763.210.5713 | www.civilmethods.com


BY MC REVENTED THIS PLAN, SPECIFICATION, OK REPORT WAS PREPARED BY MC RC UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.		DESIGNED:	1	
Tel Barl	DATE:	12-13-2016	DRAWN:	,
Kent E. Brander, P.E.			CHECKED	_
	LIC. NO .:	44578	CHECKED.	

KEB DMP

COUNTY OF STEARNS

705 Courthouse Square St. Cloud, MN 56303

STEARNS COUNTY DITCH #25 PROFILE EVALUATION AVON & ST. WENDEL TOWNSHIPS, STEARNS COUNTY, MN

